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a b s t r a c t 

We present an efficient probabilistic model of anatomical variability in a linear space of initial veloci- 

ties of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. 

To overcome the computational challenges of the high dimensional deformation-based descriptors, we 

develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape 

descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior 

that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial 

velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain 

MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Our model yields a 

more compact representation of group variation at substantially lower computational cost than the state- 

of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) 

that operate in the high dimensional image space. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

The study of anatomical shape variability across populations

nd its relationship with disease processes plays an important

ole in medical image analysis. For example, identifying patholog-

cal brain shape changes caused by neurodegenerative disorders

rom brain MRI scans provides new insights into the nature of

he disease and supports treatment ( Gerig et al., 2001; Nemmi

t al., 2015 ). Research in shape analysis mainly focuses on develop-

ng statistical models with well defined shape descriptors such as

andmarks ( Cootes et al., 1995; Bookstein, 1997 ), medial axes ( Pizer

t al., 1999 ), and deformation-based representations ( Christensen

t al., 1993 ). This paper focuses on a deformation-based shape de-

criptor with the underlying assumption that the geometric infor-

ation in the deformations explicitly reflects the shape changes,

.e., shrinkage or expansion, of local structures. In many clinical

pplications, it is natural to require the deformation to be a dif-

eomorphism, which guarantees a differentiable bijective mapping

ith a differentiable inverse. A well developed framework of Large

eformation Diffeomorphic Metric Mapping (LDDMM) endowed

ith a distance metric in the space of diffeomorphisms was in-

roduced by Beg et al. (2005) to estimate such deformations. 
∗ Corresponding author. 

E-mail addresses: miao86@mit.edu , miao86@csail.mit.edu (M. Zhang). 
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The deformable template approach, which is also known as at-

as building, is commonly used for statistical shape analysis of

iffeomorphic transformations ( Joshi et al., 2004; Twining et al.,

005; Vialard et al., 2011 ). This class of methods employs image

egistration to match a template to each individual subject and

hen computes statistics of the resulting transformations. How-

ver, the high dimensional nature of the imaging data, for in-

tance, a 128 3 or 256 3 image grid as a shape descriptor for a

D brain MRI presents substantial challenges for model selec-

ion and uncertainty estimation if only a small number of image

cans is available. Statistical inference in such a high dimensional

pace demands large computational resources and special pro-

ramming techniques. Moreover, the optimization landscape con-

ains numerous local minima. To address this problem, data di-

ensionality reduction methods that extract relevant latent struc-

ure from image transformations have been proposed in the diffeo-

orphic setting. Vaillant et al. (2004) performed principal compo-

ent analysis (PCA) in the linearized tangent space of diffeomor-

hisms (TPCA) on the initial momenta, performing statistical mod-

ling of transformations as a step that follows the estimation of

eformations. Similar approaches based on the parameterization

f stationary velocity fields ( Sweet and Pennec, 2010 ) and free-

orm B-spline deformations ( Onofrey et al., 2013 ) were also de-

eloped. Qiu et al. (2012) constructed an empirical shape distri-

ution by using TPCA to estimate the intrinsic dimensionality of

he diffeomorphic surface variation. A Bayesian model of shape

http://dx.doi.org/10.1016/j.media.2017.06.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2017.06.013&domain=pdf
mailto:miao86@mit.edu
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56 M. Zhang et al. / Medical Image Analysis 41 (2017) 55–62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

m  

R  

t

2

 

m  

o  

d  

g  

s

 

m  

m∫
 

T  

E  

e

 

w  

i  

m  

a  

m  

s  

s  

t  

s  

e  

o  

i  

r  

s

2

 

b  

m  

a  

i  

v  

c  

b  

o  

t

 

F

F  

w  

ξ  

d  

F

F  
variability has been proposed to extract the principal modes af-

ter estimating a covariance matrix of transformations ( Gori et al.,

2013 ). A unified framework of principal geodesic analysis (PGA)

was first developed by Fletcher et al. (2003) to infer the princi-

pal modes of variation simultaneously with the data fitting proce-

dure. This method generalized PCA to finite-dimensional manifolds

and estimated the geodesic subspaces by minimizing the sum-of-

squared geodesic distances. Moreover, PGA enabled factor analysis

of diffeomorphisms that treated data variability as a joint infer-

ence problem in a probabilistic principal geodesic analysis (PPGA)

model ( Zhang and Fletcher, 2014; 2015a ). All prior models re-

viewed here were designed to find a compact low dimensional

space to represent the data. However, their estimation still remains

computationally expensive due to the fact that each operation has

to be performed numerically on dense image grids in a high di-

mensional space. 

In contrast, we propose to detect the latent subspaces of

anatomical shape variability by using a low dimensional shape

descriptor of diffeomorphisms via bandlimited initial velocity

fields ( Zhang and Fletcher, 2015b ), in a model we call low dimen-

sional probabilistic principal geodesic analysis (LPPGA) . More specifi-

cally, our contributions are as follows: 

1. We define a low dimensional probabilistic framework of factor

analysis in the context of diffeomorphic atlas building. 

2. We dramatically reduce the computational cost of detecting

principal geodesics of diffeomorphisms by employing a ban-

dlimited parametrization in the Fourier space. 

3. We enforce the orthogonality constraints on the principal

modes, which is computationally intractable in high dimen-

sional models like PPGA ( Zhang and Fletcher, 2014 ). 

This paper is an extension of a recently published conference

paper ( Zhang et al., 2016 ), with several additional developments.

First, we provide in-depth derivations of the statistical model and

inference procedure. Second, we include comprehensive experi-

mental results that validate the method. Moreover, we demonstrate

Markov Chain Monte Carlo sampling in the proposed shape space,

which is computationally intractable on dense image grids. We re-

port estimated principal modes in the ADNI brain MRI dataset ( Jack

et al., 2008 ) and compare them with the results of TPCA and PPGA

of diffeomorphisms estimated on the full image grid. The experi-

mental results show that the low dimensional statistics encode im-

portant features of the data, better capture the group variation and

improve data interpretability. Moreover, our model requires sub-

stantially lower computational resources. 

2. Background 

In this section, we first briefly review the mathematical back-

ground of diffeomorphic atlas building in the LDDMM setting ( Beg

et al., 2005 ) with geodesic shooting ( Younes et al., 2009; Vialard

et al., 2012 ). We then provide a short summary of low dimensional

Fourier representation that forms the basis of our method. 

Let J 1 , ���, J N be the N input images that are assumed to

be square integrable functions defined on a d -dimensional torus

domain � = R 

d / Z 

d ( J n ∈ L 2 (�, R ) , n ∈ { 1 , · · · , N} ) and Diff( �) be

the space of diffeomorphisms. The problem of diffeomorphic atlas

building is to find the template I ∈ L 2 (�, R ) and the deformation

φn ∈ Diff( �) from template I to each input image J n that minimize

the energy function 

E({ φn } , I) = 

N ∑ 

n =1 

Dist (J n , I ◦ φ−1 
n ) + Reg (φn ) , (1)

where ◦ is a composition operator that resamples I by the inverse

of the smooth mapping φn , Dist( · , · ) denotes a distance func-
ion between images such as sum-of-squared difference (SSD), nor-

alized cross correlation (NCC), or mutual information (MI), and

eg( · ) is a regularization term that enforces smoothness of the

ransformations. 

.1. Flows of diffeomorphisms and geodesics 

The optimization of the energy function (1) over the transfor-

ations { φn } is challenging due to the nonlinearity of the space

f diffeomorphisms. Mathematically, we consider the time-varying

eformation φn ( t, x ): t ∈ [0, 1], x ∈ � to be generated by the inte-

ral flow of time-varying velocity field v n ( t, x ) ∈ V in the tangent

pace of diffeomorphisms at the identity Id ( V = T Id Diff (�) ): 

dφn (t, x ) 

dt 
= v n ◦ φn (t, x ) , φn (0 , x ) = Id . 

The geodesic path between the identity element and transfor-

ation φn is uniquely determined by a right-invariant Riemannian

etric ‖ · ‖ V on the time-dependent velocity fields as 
 1 

0 

‖ v n (t , x ) ‖ V dt . (2)

he geodesic is obtained at the minimum of (2) by integrating the

uler-Poincaré differential equation (EPDiff) ( Arnol’d, 1966; Miller

t al., 2006 ) with the initial condition of v n ( t, x ) at t = 0 : 

∂v n 
∂t 

= −ad 

† 
v v (3)

= −K 

[
(D v n ) T m n + Dm n v n + m n div (v n ) 

]
, 

here ad 

† is an adjoint operator, D is the Jacobian matrix and div

s the divergence operator. The operator K is the inverse of a sym-

etric, positive-definite differential operator L : V → V ∗ that maps

 velocity field v n ∈ V to a momentum vector m n ∈ V 

∗ such that

 n = L v n and v n = Km n . Evaluation of Eq. (3) is known as geodesic

hooting ( Younes et al., 2009; Vialard et al., 2012 ). It has been

hown that the geodesic shooting algorithm substantially reduces

he computational complexity and improves the optimization land-

cape by only manipulating the initial velocity with the geodesic

volution Eq. (3) . Therefore, in this paper we choose to optimize

ver initial velocities rather than the entire time-dependent veloc-

ty fields. With a slight abuse of notation, we set v n � v n (0, x ) to

epresent the initial velocity for the n th image J n in the remaining

ections. 

.2. Fourier representation of velocity fields 

It has been recently shown that the velocity fields generated

y the EPDiff (3) can be efficiently captured via a discrete low di-

ensional bandlimited representation in the Fourier space ( Zhang

nd Fletcher, 2015b ), which dramatically speeds up geodesic shoot-

ng algorithm. The main idea is that the velocity fields do not de-

elop high frequencies and only a small amount of low frequencies

ontributes to the transformations ( Fig. 1 ), therefore working in a

andlimited space captures the deformations as accurately as the

riginal algorithm. Here we briefly review the relevant details of

he method. 

Let f : R 

d → R be a real-valued function. The Fourier transform

of f is given by 

[ f ](ξ ) = 

∫ 
R d 

f (x ) e −2 π i 〈 ξ ,x 〉 dx, (4)

here x = (x 1 , . . . , x d ) is a d -dimensional image coordinate vector,

= (ξ1 , . . . , ξd ) is a d -dimensional frequency vector, and 〈 · , · 〉
enotes the inner product operator. The inverse Fourier transform

 

−1 of a discretized Fourier signal ˜ f 

 

−1 [ ̃  f ](x ) = 

∑ 

ξ

˜ f (ξ ) e 2 π i 〈 ξ ,x 〉 (5)
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Fig. 1. Velocity fields in spatial and Fourier domain. 
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Fig. 2. Principal analysis of diffeomorphisms. 
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s an approximation of the original signal f . For vector-valued func-

ions, such as diffeomorphisms φ and velocity fields v , we apply

he (inverse) Fourier transform to each vector component sepa-

ately. 

Analogous to the definition of a distance metric in (2) , Zhang

nd Fletcher (2015b ) developed a new representation of velocity

elds entirely in the frequency domain that leads to an efficient

omputation of diffeomorphisms in a low dimensional space. In

articular, if ˜ V is the discrete Fourier space of velocity fields, then

or any elements ˜ u , ̃  v ∈ 

˜ V , the distance metric at identity is defined

s 

 ̃

 u , ̃  v 〉 ˜ V = 

∑ 

ξ

( ̃  L ̃

 u (ξ ) , ̃  v (ξ )) , 

here ˜ L : ˜ V 	→ 

˜ V ∗ is the Fourier transform of a differential opera-

or, e.g., a commonly used Laplacian operator (−α� + e ) c with a

ositive weight parameter α and a smoothness parameter c , and

 · , · ) is a dot product in the frequency space. The Fourier trans-

orm of the Laplacian operator is given by 

˜ 
 (ξ ) = (−2 α

d ∑ 

j=1 

(
cos (2 πξ j ) − 1 

)
+ 1) c . 

he Fourier coefficients of the inverse operator K : ˜ V ∗ 	→ 

˜ V can be

asily computed as ˜ K (ξ ) = 1 / ̃  L (ξ ) . 

Since K is a smoothing operator that suppresses high frequen-

ies in the Fourier domain, the geodesic evolution Eq. (3) indicates

hat the velocity field v at each time point can be represented ef-

ciently as a bandlimited signal in the Fourier space as 

∂ ̃  v 
∂t 

= −ad 

† 
˜ v ̃  v (6) 

= − ˜ K 

[
( ̃  D ̃

 v ) T 	 ˜ m + 

˜ D ̃

 m 	 ̃  v + 

˜ m 	 ˜ ∇ · ˜ v 
]
, 

here ˜ m = 

˜ L ̃

 v , and 	 is the truncated matrix-vector field auto-

orrelation 

1 and 

˜ D ̃

 v is a tensor product ˜ D � ˜ v with 

˜ D (ξ ) =
 sin (2 πξ ) representing the Fourier frequencies of a central dif-

erence Jacobian matrix D . The operator ˜ ∇ · is the discrete diver-

ence operator that is computed as the sum of the Fourier coeffi-

ients of the central difference operator ˜ D along each dimension,

.e., ˜ ∇ · ξ = 

d ∑ 

j=1 

i sin (2 πξ j ) . 

All computational operations in (6) are easy to implement in a

runcated low dimensional space by eliminating the high frequen-

ies. To ensure that ˜ f represents a real-valued vector field in the

patial domain, we require ˜ f (ξ1 , . . . , ξd ) = 

˜ f ∗(−ξ1 , . . . , −ξd ) , where

denotes the complex conjugate. We build on the fast computa-

ion of diffeomorphisms introduced in Zhang and Fletcher (2015b )
1 The auto-correlation operates on zero-padded signals followed by truncating 

ack to the bandlimits in each dimension to guarantee the output remains ban- 

limited. 

a

 

t

o demonstrate an efficient diffeomorphic shape analysis in the

ame low dimensional Fourier space. 

. Generative model 

We introduce a generative model for principal geodesic analysis

f diffeomorphisms represented in the bandlimited velocity space
˜ 
 , with shape variability explicitly encoded as factors of the model.

Let ˜ W ∈ C 

p×q be a matrix in the Fourier space whose q

olumns ( q < N ) are orthonormal principal initial velocities in a

ow p -dimensional space with unit length, 
 ∈ R 

q ×q be a diago-

al matrix of scale factors for the columns of ˜ W , and s ∈ R 

q be

 vector of random factors that parameterizes the space of initial

elocities. Therefore, each initial velocity is generated as ˜ v = 

˜ W 
s

see Fig. 2 ). 

For subject n ∈ {1, ���, N }, we define a prior on the loading

oefficient vector s n to be a Gaussian distribution whose covari-

nce matrix is a combination of the identity matrix e and a matrix

( ̃  L 
 ˜ W 

T ˜ W 
) −1 that ensures the smoothness of the geodesic path,

.e., 

p(s n | ˜ W , 
) = N (s n ; 0 , ( ̃  L 
 ˜ W 

T ˜ W 
) −1 + e ) 

= N (s n ; 0 , ˜ L 

−1 
−2 + e ) . 

he normalizing constant of p(s n | ˜ W , 
) including the determinant

f the covariance matrix is computed as 

(2 π) q/ 2 | ̃  L 

−1 
−2 + e | 1 / 2 = (2 π) q/ 2 ·
q ∏ 

l=1 

(
1 

˜ L (l , l )
2 (l , l ) 
+ 1 

)
, 

here l ∈ {1, ���, q } denote the diagonal element. 

Assuming i.i.d. Gaussian noise on image intensities, we obtain

he likelihood 

p(J n | s n ; ˜ W , 
, I, σ ) = N (J n ; I ◦ φ−1 
n , σ 2 ) , 

here φn is a deformation that corresponds to the initial velocity

 n = F 

−1 [ ̃  W 
s n ] in the spatial domain, that is, 

dφn 

dt 
= F 

−1 [ ˜ W 
s n ] ◦ φn , (7)

nd σ 2 is the image noise variance. 

Defining � = { ̃  W , 
, I, σ } , we employ Bayes’ rule to arrive at

he posterior distribution of s n : 

p(s n | J n ; �) ∝ p(J n | s n ; �) · p(s n | ˜ W , 
) (8) 
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p  
= N (J n ; I ◦ φ−1 
n , σ 2 ) · N (s n ; 0 , ˜ L 

−1 
−2 + e ) . 

The log posterior distribution of the loading coefficients s 1 , ���,

s N for the entire image collection is therefore 

Q � log p(s 1 , · · · , s N | J 1 , · · · , J N ;�) 

= 

N ∑ 

n =1 

log p(J n | s n ; �) + log p(s n | ˜ W , 
) + const. 

= 

N ∑ 

n =1 

−‖ J n − I ◦ φ−1 
n ‖ 

2 
L 2 

2 σ 2 
− s T n ( ̃  L 

−1 
−2 + e ) s n 
2 

− dN 

2 

( log σ ) − N 

2 

q ∑ 

l=1 

log ( 
1 

˜ L ll 

2 
ll 

+ 1) + const. (9)

4. Inference 

We present two alternative ways to estimate the model param-

eters: the maximum a posteriori (MAP) and the Monte Carlo ex-

pectation maximization (MCEM) that treats the loading coefficients

{ s 1 , ���, s N } as latent variables. 

MAP . We use gradient accent to maximize the log posterior prob-

ability (9) with respect to the parameters � and latent variables

{ s n }. 

By setting the derivative of Q with respect to I and σ to zero,

we obtain closed-form updates for the atlas template I and noise

variance σ 2 : 

I = 

∑ N 
n =1 J n ◦ φn | Dφn | ∑ N 

n =1 | Dφn | 
, 

σ 2 = 

1 

MN 

N ∑ 

n =1 

‖ J n − I ◦ φ−1 
n ‖ 

2 
L 2 , 

where M is the number of image voxels. 

To estimate the matrix of principal directions ˜ W , the scaling

factor 
, and the loading coefficients { s 1 , ���, s N }, we follow the

derivations in Zhang and Fletcher (2015b ) and first obtain the gra-

dient of Q w.r.t. the initial velocity ˜ v n as follows: 

(i) Forward integrate the geodesic evolution Eq. (6) to compute

time-varying velocity fields { ̃ v n } and then follow the flow Eq.

(7) to generate a flow of diffeomorphic transformations { φn }. 

ii) Compute the gradient ∇ ˜ v n Q at time point t = 1 as 

δQ 1 � [ ∇ ˜ v n Q] t=1 (10)

= − ˜ K F 

[ 
1 

σ 2 
(J n − I ◦ φ−1 

n ) · ∇(I ◦ φ−1 
n ) 

] 
. 

ii) Backward integrate the gradient (10) to t = 0 to obtain

δQ 0 � [ ∇ ˜ v n Q] t=0 by using reduced adjoint Jacobi field equa-

tions ( Francesco, 1995; Zhang and Fletcher, 2015b ) 

d ̂ v 
dt 

= −ad 

† 
˜ v 
ˆ h , 

d ̂ h 

dt 
= −ˆ v − ad ˜ v ̂  h + ad 

† 

ˆ h 
˜ v , 

where ad ˜ v ̂ h = 

˜ D ̃

 v ∗ ˆ h − ˜ D ̂

 h ∗ ˜ v with 

∗ being a truncated convolu-

tion operator, and 

ˆ v , ̂  h ∈ 

˜ V are introduced adjoint variables. 

After applying the chain rule, we have the gradient of Q for up-

dating the loading factor s n : 

∇ s n Q = −
 ˜ W 

T δQ 0 − s n . 

The gradients of Q w.r.t. ˜ W and 
 are given as follows: 

∇ ˜ W 

Q = −
N ∑ 

n =1 

δQ 0 s 
T 
n 
, 
∇ 
Q = −
N ∑ 

n =1 

(
˜ W s T n δQ 0 − 1 

˜ L 
2 ( ̃  L 
2 + 1) 

)
. 

nlike the PPGA model ( Zhang and Fletcher, 2014 ), we enforce the

utual orthogonality constraint on the columns of ˜ W since it is

omputationally tractable in the low dimensional space. There are

wo natural ways to satisfy this constraint: first is to treat ˜ W as

 point on the complex Stiefel manifold V n (C 

d ) , which is a set of

rthonormal n -frames in C 

d ( Edelman et al., 1998 ). This requires

rojecting the gradient of ˜ W onto the tangent space of V n (C 

d ) , and

hen updating ˜ W within a small step along the projected gradient

irection. Another way is to use Gram-Schmidt process ( Cheney

nd Kincaid, 2009 ) for orthonormalizing the column vectors of ˜ W 

n a complex inner product space. We employ the latter scheme in

ur implementation. 

CEM . To treat the loading coefficients { s n } fully as latent

andom variables, we integrate them out from the posterior

istribution (9) by using a Hamiltonian Monte Carlo (HMC)

ethod ( Duane et al., 1987 ) due to the fact that direct sampling

s difficult. This scheme includes two main steps: 

(i) Draw a random sample of size S of the latent variables { s n } via

HMC sampling based on current parameters �( k ) . Let s jn , j =
1 , · · · , S, denote the j th sample for the subject n . A Hamilto-

nian function H( s , β) = U( s ) + V (β) that consists of a poten-

tial energy U( s ) = − log p( s | J;�) and a kinetic energy V (β) =
− log g(β) , where g ( β) is typically an independent Gaussian

distribution on an auxiliary variable β , is constructed to simu-

late the sampling system. Starting from the current point ( s , β) ,

the Hamiltonian function H produces a candidate point ( ̂ s , ˆ β)

that is accepted as a new sample with probability 

p accept = min (1 , exp (−U( ̂ s ) − V ( ̂  β) + U( s ) + V (β))) . 

The sample mean is taken to approximate the expectation: 

ϒ(� | �(i ) ) ≈ 1 

S 

S ∑ 

j=1 

N ∑ 

n =1 

log p(s jn | J n ;�(i ) ) , (11)

where the superscript ( i ) denotes the current state of the pa-

rameter set �. 

ii) Maximize the expectation function Y to update parameters �.

By setting its derivatives with respect to I and σ 2 to zero, we

obtain closed-form updates for the atlas template I and noise

variance σ 2 as 

I = 

∑ S 
j=1 

∑ N 
n =1 I ◦ φ jn | Dφ jn | ∑ S 

j=1 

∑ N 
n =1 | Dφ jn | 

, 

σ 2 = 

1 

SMN 

S ∑ 

j=1 

N ∑ 

n =1 

‖ J n − I ◦ φ−1 
jn 

‖ 

2 
L 2 . 

Since there is no closed-form update for ˜ W and 
, we use gra-

dient ascent to estimate the principal initial velocity basis ˜ W 

and the scaling matrix 
. The gradients w.r.t. ˜ W , 
 of (11) are

given as follows: 

∇ ˜ W 

ϒ = −
S ∑ 

j=1 

N ∑ 

n =1 

[ ∇ ˜ v jn ϒ] t=0 s 
T 
jn 
, 

∇ 
ϒ = −
S ∑ 

j=1 

N ∑ 

n =1 

(
˜ W s T jn [ ∇ ˜ v jn ϒ] t=0 − 1 

˜ L 
2 ( ̃  L 
2 + 1) 

)
. 

. Evaluation 

To evaluate the effectiveness of the proposed low-dimensional

rincipal geodesic analysis (LPPGA) model, we applied the algorithm
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Fig. 3. Cumulative variance explained by principal modes estimated from our 

model (LPPGA-MCEM and LPPGA-MAP) and baseline algorithms (PPGA-MAP and 

TPCA). 

Table 1 

Number of principal modes that 

achieves 90% and 95% of total 

variance. 

Method 90% 95% 

LPPGA-MCEM 9 17 

LPPGA-MAP 11 20 

PPGA-MAP 15 27 

TPCA 19 35 

Table 2 

Comparison of linear regression models on the first two prin- 

cipal mode for our model (LPPGA-MCEM / LPPGA-MAP) and 

the baseline algorithms (PPGA and TPCA) on 40 brain MRIs 

from ADNI. 

MMSE 

Model Residual R 2 F p -value 

LPPGA-MCEM 4.42 0.19 21.68 1.13e −5 

LPPGA-MAP 4.45 0.18 19.47 2.18e −5 

PPGA 4.49 0.16 17.96 5.54e −5 

TPCA 4.53 0.14 16.34 1.10e −4 

ADAS 

Model Residual R 2 F p -value 

LPPGA-MCEM 8.25 0.21 13.14 1.033e −5 

LPPGA-MAP 8.36 0.19 11.68 3.20e −5 

PPGA 8.41 0.18 11.10 5.09e −5 

TPCA 8.65 0.17 10.75 1.03e −4 

CDR 

Model Residual R 2 F p -value 

LPPGA-MCEM 2.21 0.22 24.78 3.16e −6 

LPPGA-MAP 2.22 0.20 23.99 4.37e −6 

PPGA 2.23 0.19 22.92 6.77e −6 

TPCA 2.25 0.17 21.54 2.88e −5 

d  

e

 

t  

o  

a  

o  

p  

i  

T  
o brain MRI scans of 90 subjects from the ADNI study ( Jack et al.,

008 ) , aged 60 to 90. Fifty subjects have Alzheimer’s disease (AD)

nd the remaining 40 subjects are healthy controls. All MRI scans

ave the same resolution 128 × 128 × 128 with the voxel size of

.25 × 1.25 × 1.25mm 

3 . All images underwent the preprocessing

f skull stripping, downsampling, intensity normalization to [0, 1]

nterval, bias field correction, and co-registration with affine trans-

ormations. 

We first estimate a full collection of principal modes q = 89

or our model, using α = 3 . 0 , c = 3 . 0 for the differential operator
˜ 
 with p = 16 3 dimensions of the initial velocity field 

˜ v , which is

imilar to the settings used in pairwise diffeomorphic image reg-

stration ( Zhang and Fletcher, 2015b ). The number of time steps

or integration in geodesic shooting is set to 10. We initialize the

tlas I to be the average of image intensities, 
 to be the iden-

ity matrix, s n to be the all-ones vector, and the principal initial

elocity matrix ˜ W to be the principal components estimated by

PCA ( Vaillant et al., 2004 ) that runs linear PCA in the space of

nitial velocity fields after atlas building. For the HMC sampling of

he MCEM variant of our model, we use the step size of 0.01 for

eap-frog integration with 20 units of time discretization in inte-

ration of EPDiff equations. 

To investigate the ability of our model to capture anatomi-

al variability, we use the loading coefficients s = { s 1 , · · · , s N } as

 shape descriptor in a statistical study. The idea is to test the

ypothesis that the principal modes estimated by our method

re correlated significantly with clinical information such as mini-

ental state examination (MMSE), Alzheimer’s Disease Assessment

cale (ADAS), and Clinical Dementia Rating (CDR). We project the

ransformations that are derived from the estimated atlas I 0 and

ach individual from a testing dataset with 40 subjects onto the

stimated principal modes. We then fit the clinical score MMSE,

DAS, and CDR using a linear regression model on the computed

oading coefficients. 

We use the previous state of PPGA ( Zhang and Fletcher, 2014 )

n a high dimensional image space and TPCA ( Vaillant et al., 2004 )

s two baseline methods. In order to conduct a fair comparison, we

eep all the parameters including regularization and time steps for

umerical integration fixed across the three algorithms. To evaluate

he model stability, we rerun the entire experiment 50 times on

andomly sampled subsets of 50 images. 

. Results 

Fig. 3 reports the cumulative variance explained by the model

s a function of the model size. Both variants of our approach

PPGA-MCEM and LPPGA-MAP achieve higher representation accu-

acy than the two state-of-the-art baseline algorithms across the

ntire range of model sizes. This is mainly because that conduct-

ng statistical analysis in the low dimensional space improves the

radient-based optimization landscape, where local minima often

ccur in a high dimensional image space. The Monte Carlo sam-

ling of MCEM algorithm further reduces the risk of getting stuck

n local minima by allowing random steps away from the current

inimal solution. 

Table 1 reports the number of principal modes required to

chieve the same level of shape variation across the entire dataset.

ur model LPPGA-MCEM / LPPGA-MAP captures better shape

hanges while using fewer number of principal modes, which also

eans that our model estimates more compact representation of

he image data. 

Fig. 4 visualizes the first three modes of variation in this co-

ort by shooting the estimated atlas I along the initial velocities

˜ 
 = a i ˜ W i 
i ( a i = {−2 , −1 , 0 , 1 , 2 } , i = 1 , 2 , 3 ). We also show the log

eterminant of the Jacobian at a i = 2 . The first mode of varia-

ion clearly reflects that changes in the ventricle size, which is the
ominant source of variability in the brain shape. The algorithm

stimates standard deviation of the image noise to be σ = 0 . 02 . 

Fig. 5 reports run time and memory consumption for building

he full model of anatomical variability. Our approach LPPGA-MAP

ffers an order of magnitude improvement in both the run time

nd memory requirements while providing a more powerful model

f variability. While the MCEM variant is computationally more ex-

ensive than all baseline methods due to the sampling procedure,

t provides better statistical analysis of regression (as reported in

able 2 ) than the two baseline algorithms using the first two prin-
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Fig. 4. Top to bottom: first, second and third principal modes of brain shape variation estimated by our model LPPGA-MCEM for varying amounts of the corresponding 

principal mode, and log determinant of the transformation Jacobians at 2 
i (regions of expansion in red and contraction in blue). Axial and coronal views are shown. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

c  

m  

l  

m  

p  

s  

v

 

m  

p  

o  

t  

f  

i  
cipal modes. The higher F and R 2 statistics indicate that our ap-

proach captures more variation of the MMSE scores than the other

models. Another advantage of such Monte Carlo approach is that

it provides consistent statistics in noisy case ( Allassonnière et al.,

2007 ) and better model selection. 

7. Discussion and conclusion 

We presented a low dimensional probabilistic framework for

factor analysis in the space of diffeomorphisms. Our model explic-

itly optimizes the fit of the principal modes to the data in a low di-

mensional space of bandlimited velocity fields, which results in (1)

better data fitting, and (2) dramatically lower computational cost

with more powerful statistical analysis. We developed an inference

strategy based on MAP to estimate parameters, including the prin-
ipal modes, noise variance, and image atlas simultaneously. Our

odel also enables Monte Carlo sampling because of the efficient

ow dimensional parametrization. We demonstrated that the esti-

ated low dimensional latent loading coefficients provide a com-

act representation of the anatomical variability and yield a better

tatistical analysis of anatomical changes associated with clinical

ariables. 

This work represents the first step towards efficient probabilistic

odels of shape variability based on high-dimensional diffeomor-

hisms. There are several avenues for future work to build upon

ur model. We will explore Bayesian variants of shape analysis

hat infer the inherent dimensionality directly from the data by

ormulating dimensionality reduction with a sparsity prior. Reduc-

ng the dimensionality to the inherent modes of shape variability
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Fig. 5. Comparison of run time and memory consumption. The implementation employed a message passing interface (MPI) parallel programming for all methods and 

distributed 90 subjects to 10 processors. 
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as the potential to improve hypothesis testing, classification, and

ixture models. A multiscale strategy like that of Sommer et al.

2013) can be added to our model to make the inference even

aster. Moreover, since Monte Carlo sampling is computationally

ore tractable in our model, we can automatically estimate the

egularization parameter jointly with the shape variability model.

his eliminates the effort of hand-tuning on parameters and en-

bles uncertainty quantification of the hidden variables. Another

nteresting avenue is to estimate an even more sharp atlas that

as clearer details of brain structures such as sulci. Since the at-

as is essentially the average over intensities of all inter-subjects,

t is possible that structures with relatively large differences across

ubjects get smoothed out under the spatially-invariant smooth-

ess constraints. Therefore, developing a spatially-varying kernel

hat penalizes local smoothness is desirable for the problem of at-

as estimation. 
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